Village of Millersburg Drinking Water Consumer Confidence Report For 2015

The Village of Millersburg has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, how to participate in decisions concerning your drinking water and water system contacts.

Source Water Information

The Village of Millersburg receives its drinking water from 2 ground water production wells located in the big engine aquifer of the Killbuck Valley Watershed District.

The Village of Millersburg's source of drinking water has a HIGH susceptibility to contamination due to: the sand and gravel aquifer has a depth to water of 3 feet below the surface; there is no significant low-permeability protective layer between the aquifer and the ground surface; and potential significant contaminant sources exist within the protection area

What are sources of contamination to drinking water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban Strom water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Federal Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

Who needs to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

About your drinking water.

The EPA requires regular sampling to ensure drinking water safety. The Village of Millersburg conducted sampling for bacteria; inorganic; radiological; synthetic organic; and volatile organic contaminants during 2015. Samples were collected for a total of 41 different contaminants most of which were not detected in the Village of Millersburg water supply. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, are more than one year old.

Table of Detected Contaminants

Listed below is information on those contaminants that were found in the Village of Millersburg drinking water.

Contaminants (Units)	MCLG	MCL	Level Found	Range of Detections	Violation	Sample Year	Typical Source of Contaminants	
Bacteriological Contaminants								
Total Coliform Bacteria	0	1 Monthly Positive Sample	0	N/A	NO	2015	Naturally present in the environment	
Inorganic Contaminants								
Antimony (ppb)	6	6	<4.0	N/A	NO	2015	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	
Arsenic (ppb)	0	10	<3.0	N/A	NO	2015	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes	
Barium (ppm)	2	2	.0835	N/A	NO	2015	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits	
Beryllium (ppb)	4	4	<1.0	N/A	NO	2015	Discharge from metal refineries and coal burning factories; discharge from electrical, aerospace and defense industries	
Cadmium (ppb)	5	5	<1.0	N/A	NO	2015	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	
Chromium (ppb)	100	100	<5.0	N/A	NO	2015	Discharge from steel and pulp mills; erosion of natural deposits	
Cyanide (ppb)	200	200	<10.0	N/A	NO	2015	Discharge from steel/metal factories; discharge from plastic	

TABLE OF DETECTED CONTAMINANTS

							and fertilizer factories
Fluoride (ppm)	4	4	<0.20	N/A	NO	2015	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (ppb)	2	2	<0.50	N/A	NO	2015	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and crop land
Selenium (ppb)	50	50	<5.0	N/A	NO	2015	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium (ppb)	0.5	2	<1.5	N/A	NO	2015	Leaching from ore-processing sites; discharge from electronics, glass and drug factories
Nitrate (ppm)	10	10	0.98	N/A	NO	2015	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits
Synthetic Organic Co	ontaminar	nts	l.	1	l.		I
Alachlor (ppb)	0	2	<0.20	N/A	NO	2015	Runoff from herbicide used on row crops
Atrazine (ppb)	3	3	<0.30	N/A	NO	2015	Runoff from herbicide used on row crops
Simazine (ppb)	4	4	<0.35	N/A	NO	2015	Herbicide runoff
Volatile Organic Con	taminant	s					
TTHM [Total Trihalomethane] (ppb)	N/A	80	21.1	7.29-21.1	NO	2015	By-product of drinking water chlorination
HAA5 [Haloacetic Acids] (ppb)	N/A	60	<6.0	N/A	NO	2015	By-product of drinking water chlorination
Benzene (ppb)	0	5	<0.50	N/A	NO	2015	Discharge from factories; leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	<0.50	N/A	NO	2015	Discharge from chemical plants and other industrial activites
Chlorobenzene (ppb)	100	100	<0.50	N/A	NO	2015	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	600	600	<0.50	N/A	NO	2015	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	<0.50	N/A	NO	2015	Discharge from industrial chemical factories
1,2-Dichloroethane (ppb)	0	5	<0.50	N/A	NO	2015	Discharge from industrial chemical factories
1,1 Dichloroethylene (ppb)	7	7	<0.50	N/A	NO	2015	Discharge from industrial chemical factories
cis-1,2- Dichloroethylene (ppb)	70	70	<0.50	N/A	NO	2015	Discharge from industrial chemical factories
Trans-1,2- Dichloroethylene (ppb)	100	100	<0.50	N/A	NO	2015	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	<0.50	N/A	NO	2015	Discharge from pharmaceutical and chemical companies
1,2- Dichloropropane	0	5	<0.50	N/A	NO	2015	Discharge from industrial chemical factories

(ppb)								
Ethylbenzene (ppb)	700	700	<0.50	N/A	NO	2015	Discharge from petroleum refineries	
Styrene (ppb)	100	100	<0.50	N/A	NO	2015	Discharge from rubber and plastic factories; leaching from landfills	
Toluene (ppm)	1	1	<0.0005	N/A	NO	2015	Discharge from petroleum factories	
1,1,1- Trichloroethane (ppb)	200	200	<0.50	N/A	NO	2015	Discharge from metal degreasing sites and other factories	
Tetrachloroethylene (ppb)	0	5	<0.50	N/A	NO	2015	Discharge from factories and dry cleaners	
1,2,4- Trichlorobenzene (ppb)	70	70	<0.50	N/A	NO	2015	Discharge from textile finishing factories	
Trichloroethylene (ppb)	0	5	<0.50	N/A	NO	2015	Discharge from metal degreasing sites and factories	
1,1,2- Trichloroethane (ppb)	3	5	<0.50	N/A	NO	2015	Discharge from industrial chemical factories	
Vinyl Chloride (ppb)	0	2	<0.50	N/A	NO	2015	Leaching from PVC piping; discharge from plastics factories	
Xylenes (ppm)	10	10	<0.0005	N/A	NO	2015	Discharge from petroleum and chemical factories	
Radioactive Contaminants								
Gross Alpha (pCi/L)	0	15	12.6	N/A	NO	2015	Erosion of natural deposits	
Radium-228 (pCi/L)	0	5	<1.0	N/A	NO	2015	Erosion of natural deposits	

Lead Educational Information

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Village of Millersburg is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791or at http://www.epa.gov/safewater/lead.

License to Operate (LTO) Status Information

In 2015 we had an unconditioned license to operate our water system.

Public Participation Information

How do I participate in decisions concerning my drinking water?

Public participation and comment are encouraged at regular meetings of Village of Millersburg Council which meets the 2nd and 4th Monday of each month at 7:00 P.M. at 6 North Washington Street. For more information on your drinking water contact Kevin Vaughn, Utility Superintendent at 330-674-2525 or <u>kevin.vaughn@millersburgohio.com</u>; or Nathan Troyer, Village Administrator at 330-674-1886 or <u>nathan.troyer@millersburgohio.com</u>.

Definitions of some terms contained within this report.

<u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

<u>Parts per Million (ppm) or Milligrams per Liter (mg/L)</u> are units of measure for concentration of a contaminant. A part per million corresponds to one second in a little over 11.5 days.

Parts per Billion (ppb) or Micrograms per Liter (µg/L) are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.

The "<" symbol: A symbol which means less than. A result of <5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not detected.

Picocuries per liter (pCi/L): A common measure of radioactivity.